skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Akter, Suchona"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Two-dimensional layered hybrid organic–inorganic bronze (HOIB) materials are a new class of mixed-valence hybrid metal-oxides that demonstrate great potential as advanced functional materials for next-generation electronics. Recently, new hybrid vanadium bronze materials, (EV)V8O20 and (MV)V8O20, EV = ethyl viologen and MV = methyl viologen, have been introduced, with EV having ≈3 orders of magnitude higher electrical conductivity than the MV system. Given their stoichiometrically similar inorganic V–O layers and close reduction potentials, the observed significant difference in electrical conductivities is puzzling. Here, through accurate first-principles electronic structure calculations coupled with MACE machine learning molecular dynamics (MD) simulations validated by accurate ab initio MD data, we provide mechanistic molecular-level insights into dominant charge transport and electrical conductivity pathways in these materials. Our detailed structural and electronic properties data identify factors contributing to this significant difference in the electrical conductivity of these materials. Our findings in this work offer clues and provide valuable insights into improving the electrical conductivity of hybrid bronze and similar materials, suggesting new ways to guide the design of next-generation materials with enhanced properties for electronic and energy conversion applications. 
    more » « less
    Free, publicly-accessible full text available May 22, 2026
  2. Steed, Jonathan W (Ed.)
    Free, publicly-accessible full text available November 6, 2025